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BUCKLING BY STITCHING

B.N. Cox =y o
Rockwell International Science Center j’ /3 é% v
X/

Thousand QOaks, CA

ABSTRACT

Elementary results are presented for the buckling of stitched, laminated composites
containing delamination cracks. The stitching fibers are assumed to provide continuous, linear
restoring tractions opposing the deflection of the delaminated layer adjacent to the crack. It is
shown that there exists a characteristic length a_ for buckling: if the length, 2a, of the
delamination crack exceeds 2a_, then, when bucl?ling occurs, it will consist of waves of period
2a, and will usually not span the whole delamination. Simple expressions are derived for the
critical buckling load and the minimum stitching density required to suppress buckling of the
delaminated layer.

INTRODUCTION

One of the principal obstacles to using relatively cheap graphite epoxy laminates in
the commercial aircraft industry is their susceptibility to delamination, especially during
impact, and the subsequent catastrophic growth of the delamination crack when the
delaminated layer buckles under in-plane compression [see, for example, ref. 1. One promising
solution to this problem is the incorporation of fiber tows normal to the laminate plane by
stitching. While stitching tows do not eliminate delamination during impact, they do minimize
loss of strength under subsequent compression [refs. 2,3]. It appears that the stitching tows
bridge the delamination crack and prevent or reduce buckling of the adjacent delaminated
layer. The in-plane stiffness then survives relatively unimpaired and, if the delaminated layer
remains flat, the delamination crack does not grow, since it experiences no driving force.
Failure under compressive loading occurs by some other mechanism and the compressive
strength after impact is restored to an acceptably high value.

This paper presents the simplest possible description of the mechanics of this buckling
problem, which can be modeled as that of a buckling plate on a Winkler foundation of damping
springs [e.g., refs. 4,5]. However, in contrast to the usual assumption, buckling deflections in
the present problem can occur in one direction only. This constraint gives rise to a characteris-
tic length for buckling and an enhanced value of the critical force for buckling. Simple
arguments are presented to show how these fundamental quantities vary with stitching fiber
density and the thicknesses of the delaminated layer and the substrate beneath it.

BUCKLING IN THE PRESENCE OF LINEAR DAMPING

Consider a delamination crack of length 2a lying along the x-axis, as shown in
Figure 1. Let the crack be in a state of plane strain. Suppose the body containing the crack is
subject to a compressive load that results in the compressive force F per unit length being
imposed on the thin layer of delaminated material above the delamination crack. Buckling of
the thin layer will result in the deflection w(x), which can be determined if the layer is thin
enough by consideration of the balance of forces according to the elementary theory of bending
plates [refs. 5,6]. If the delamination crack is bridged by stitching fibers, as shown
schematically in Figure 1, the problem is modified by the lateral tractions those fibers impose.
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Fig. 1. Schematic of a delaminated and buckled layer, showing lateral tractions opposing the
buckling deflection.

If the stitching fiber spacing is appreciably smaller than 2a, the lateral tractions can be
considered continuous over x. Furthermore, if the stitching fibers are debonded from the
matrix or are much stiffer than the matrix, then the tractions, denoted q, will be a linear
function of the deflection:

q(x) = sw(x) , (8>0) . (1

The spring constant g will be related below to the properties of the stitching tows. The
deflection profile is given by the linear differential equation [refs. 4-6]
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where F > 0 denotes a compressive force and D is the flexural rigidity of the delaminated

layer. (The body has been assumed to be isotropic and homogeneous, a crude representation of a
stitched laminate but a useful simplification when exploring fundamental aspects of the
problem.) The deflection must also satisfy clamped end boundary conditions and be positive,
since negative deflections would imply interpenetration. Equation (2) has both symmetric and
antisymmetric solutions, but only the symmetric solutions can satisfy w > 0. The symmetric
solutions have the form

w(x) = A, cosg x + A_cost_x (3a)
where ¢, s\/f(lt J1-b/f2) (3b)
with f = F/20 and b = 8/D . (3¢)

The boundary conditions determine both the ratio A /A_ and the critical buckling load fém) (a)
for the m'P buckling mode for delamination crack length 2a. Numerically determined values of
f((:m) (a) are shown for the first few modes in Fig. 2 (see also [Ref. 4]). Each fém) is a

monotonically decreasing function of a, in contrast to the case of a plate with simply supported

ends, ]for which the buckling load decreases for small a and then increases as a? for large a [e.g.,
ref. 5].
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Fig. 2 The critical force for buckling for the first few symmetrical buckling modes as a
function of delamination crack length.

With f (m) determined, the corresponding deflection w(m)(x) is also determineq t9
within a (m.sltipligative constant by the boundary conditions. To the left of the points A M in
Fig. 2, w M)(x) is of one sign, i.e. it con(taSns reo )zeroes in (-(arhz’); and, if it is taken to be positive,
it contains m maxima, At the points A m , B m , etc., d2w" //dx2? evaluated at x = ta passes
through zero and w m)(x) acquires two zeroes, which begin at x = ta and move into the interval
(-a,a) as a increases. At all values of a to the right of A(m), w(m)(x) possesses at least two
zeroes, i.e. it is no longer of one sign.

For w > 0, the minimum buckling load, f, is thus found at the point A(l), l.e.
¥
fo=2 % : )
° 3
The crack length corresponding to point A(l) is given by
a =231 . (5

° 2 p4
It denotes a characteristic buckling length: whenever a > a,, buckling will occur not over the

whole delamination (-a,a), but over some subinterval or series of subintervals of length 2a_ . The
buckling profile over each subinterval is that for £, a = 37/2 and §_a = 7/2, i.e.

w (x) = Afcos 3 4 3cos X . (6)

24 2a
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with A an undetermined constant. The appearance of buckling when a>a_ is therefore
qualitatively different from the case of an unbridged delamination crack. If a<ag, buckling
occurs over the whole interval (-a,a) and the critical load rises with decreasing a as in Fig. 2.

STITCHED LAMINATES

For stitched laminates, the stiffness parameter g8 depends on how the delaminated
layer is coupled to the rest of the material. Figure 3(a) shows the case of a delamination crack
lying in the mid-plane of a thin panel. Buckling upon compressive loading occurs in a symmetric
manner. Figure 3(b) shows the case of a thin delaminated layer lying over a thick substrate,
which remains straight while the delaminated layer buckles. If the stitching fiber tows pass
from top to bottom of the panel and they are initially unstrained, then the stiffness parameter
is approximately

v E
Shf (case 1) (7a)
B =
v E
15; f (case II) , (7b)

where case I refers to the case of Fig. 3(a) and case II to that of Fig. 3(b), v, is the volume
fraction of the stitching fibers, E; is the fiber modulus, and the dimensions B and t are defined
in Figure 3.
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Fig. 3 (a) Symmetric buckling. (b) Buckling of a thin layer over a thick substrate.

Now the results of Section 2 were obtained for an isotropic material, whereas a
stitched laminate is more closely orthotropic. Nevertheless, useful results in terms of orders of
magnitude can be obtained by making some crude approximations concerning elastic
properties. Since buckling of thin plates is determined mainly by in-plane elastic properties, the
flexural rigidity of Eq. (3) can be approximated by
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= —— . (8)
12(1 - V)

where v is Poisson's ratio, u¢ is the volume fraction of fibers lying in the axial direction (parallel
to the x-axis and the applied compressive load), and it has been assumed that these fibers have
the same modulus as the stitching fibers. The stitching and axial fibers are indeed often of the
same kind. The characteristic buckling length can now be approximated by

Uf 1
cl(u—s-)“ h (case I) (9a)
a =
o] v t
£k C\ L
Cl(g) 4[5]4 h (case II) (9b)
ith 3% u 1.5 wh 0.3 (9¢)
wi C, =>3,, — 5+ = 1.5 when v = 0. : c
17,32 (1 2)%

and the critical force f, of Eq. (4) is approximately

Cz(UfUS)% Ech (case I) (10a)
£, =
%h%
Colupug) *(3) "Egh (case 1I) (10b)
: 5
with C, = st ~ 1.0 when v=0.3 : (100)
2~ P25k

Equations (9) and (10) illustrate in a simple way how geometry and fiber density
control the efficacy of stitching in suppressing buckling. In particular, Eq. (9) shows that the
characteristic buckling length in stitched materials will usually be no more than an order of
magnitude greater than the thickness, h, of the delaminated layer. Even if v_ ~ 10'2uf, i.e.,
sparse stitching, one still has a = 5h for case I, since the ratio ug/ug appears'to the power 3.
The additional factor (t/h)* in cCase Il is also unlikely to be much greater than 2 in practice.

In the absence of impact damage, stitched laminates generally fail under in-plane
compression by the formation of a kink band of buckled and broken axial fibers. The stress at
which this occurs corresponds to a particular value, f' , of the force acting on the ends of a
delaminated layer if it has not yet buckled. Substituting f! for f_, Eq. (10) provides a simple
estimate of the stitching fiber density required to suppress%uckling and eliminate delamination
crack growth as a potential failure mechanism. Thus the required value of vg Is proportional
to (f'/h)2, Conversely, the critical force, f,» is more sensitiye to fiber volume fractions than

is the’characteristic buckling length, being proportional to ug %

1

Equation (10) also shows that f_ in case II varies as t2, which simply reflects the fact
that stitching fibers of shorter initial through-thickness length experience greater strain for a
given buckling deflection. Thus an effective method of raising f, for a given density of
stitching fibers and laminate thickness is to pass stitching tows only part way through the
laminate, achieving through-thickness reinforcement by staggering the stitching at different
depths. Laminates with such stitching patterns are indeed available, but no results concerning
their delamination and buckling behavior have yet been published.
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CONCLUSIONS

The presence of stitching tows introduces a minimum compressive load, f o’ required
to buckle a delaminated layer in a stitched laminate, regardiess of the length of the
delamination crack; and a characteristic buckling length, a_. If the delamination crack length
2a exceeds 2a,, buckling has the form of waves of length 2a_, which arise when the load
exceeds f . In typical stitched laminates, the length a_ will not exceed the thickness, h, of the
buckling delaminated layer by more than one order of magnitude. The critical force, f_, can be
enhanced by increasing stitching density or passing stitching tows only part way throug?: the
laminate.
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